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We have used the multifractal approach for the characterization of the spectral line series of energized
atoms. We show how the wavelength distribution of lines follows the characteristic scaling of the multifractal
sets. This technique provides us with a way of describing the properties of the clustering of lines in the spectra.
We have used a multiplicative multifractal model to test the reliability of the method when applied to the usual
number of lines of experimentally obtained spectra. By means of the multiscaling approach we can control the
robustness of the method when applied to sets of lines censored below a given density threshold.
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PACS number~s!: 05.45.1b, 32.30.2r, 64.60.Ak

I. INTRODUCTION

The spectral line series associated to an energized atom is
the sequence of wavelengths characterizing its electromag-
netic radiation. Each element has its own characteristic series
of spectral lines. Hydrogen displays the well known five se-
ries in different parts of the spectrum: the Balmer series in
the visible region, the Lyman lines in the ultraviolet, and the
Paschen, Brackett, and Pfund series lying in the infrared. The
wavelength distribution of the lines expressed in terms of the
inverse wavelength is remarkably well represented by Balm-
er’s formula
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with m52 for the Balmer series, andm51,3,4,5 for Lyman,
Paschen, Brackett, and Pfund series, respectively.R denotes
the Rydberg constant.

Similar formulas exist for the atoms of the alkali metals
and other hydrogenlike elements like singly-ionized helium.
Experimental spectral line series corresponding to other at-
oms are also available. The spectrum of atoms like iron or
cobalt are visually more complicated than the spectrum of
the hydrogen atom and obviously they do not appear to show
the same regularity in spacing. Nevertheless, the distribution
of the spectral lines of these atoms might be an interwoven
superposition of formulas similar to Balmer’s.

In this paper we will see that the wavelength distribution
of the emission lines of the spectrum of energized atoms
follows some kind of multifractal scaling.

II. THE MULTIFRACTAL SCALING

In order to study, by means of the multifractal analysis
@1#, the spectral line series within a segment of wavelengths,
we will normalize the length of the segment to unity. Per-
forming a partition of the unit segment into cells of sizer ,

we count the number of lines lying within each one,ni(r ).
Multifractal scaling holds if

Z~q,r !5 (
i51

N~r ! S ni~r !

N D q}r t~q!, ~2.1!

N being the total number of lines. The quantities defined as
D(q)5t(q)/(q21) are known as Re´nyi dimensions or gen-
eralized dimensions@2,3#. This function characterizes the
scaling properties of the multifractal set.

An alternative description is provided by thef (a) func-
tion @4,5#. If the cell-counts can be expressed as a power law
of the scale,pi(r )5(ni(r )/N)5r a i. Multifractal scaling im-
plies that the distribution of thea values ~also known as
Hölder exponents! is

n~a!da;u lnr u1/2r2 f ~a!da, ~2.2!

wheren(a)da is the number of timesa takes a value in a
given interval@a,a1da# @3#. The distribution of the Ho¨lder
exponentsa is related witht(q) through a Legendre trans-
formation @4,6#.

A. An illustrative multifractal model

To illustrate the multifractal behavior in a controllable set
of lines similar to the spectral line series, we will consider a
multiplicative multinomial cascade in the unit interval, used
extensively to mimic turbulent processes@5,7,8#. Dividing
the unit interval into s pieces, we assign a probability
p1 ,p2 . . . ,ps to each of the subintervals
(p11p21•••1ps51). Each subinterval is then subdivided
into s pieces in the same way as the parent, and we assign to
each of the subdivisions one of the numberspi . The value
attached to a new subdivision is the product of thispi value
with its parent and all its ancestors. We continue the cascade
until L levels have been constructed, leaving at the endsL

subintervals with a measure$pi1pi2•••piL% i51
sL , (pi j

P$p1 ,p2 , . . . ,ps%) attached to each one. Ifn (n<s) is the
number of nonzeropi values, it is straightforward to see that
in the limit whenL→`,

*Electronic address: andressa@evalvx.ific.uv.es
†
Electronic address: martinez@hubble.matapl.uv.es

PHYSICAL REVIEW E SEPTEMBER 1996VOLUME 54, NUMBER 3

541063-651X/96/54~3!/2431~7!/$10.00 2431 © 1996 The American Physical Society



D~q!5~12q!21
ln~( i51

n pi
q!

lns
~2.3!

and thef (a) spectrum is given by
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In Fig. 1~a! we show a realization of a multiplicative multi-
nomial cascade withs56 and number of levelsL54. First
we have distributed 10 000 lines into thesL subintervals ac-
cordingly to the probabilities assigned to each of thesL sub-
intervals. Only 1012 randomly selected lines have been plot-
ted in the figure. The values of the initial probabilities used
in this example arep150.1, p250.1, p350.1, p450.2,
p550.2, p650.3.

Equations~2.3!–~2.5! are the analytical expressions for
the Rényi dimensions and thef (a) curve, respectively. Nev-
ertheless, we want to test how the scaling relation~2.1!, used
for practical purposes, works for a limited number of lines.
As we will show, we are able to get reliable results for the

multifractal curveD(q) using Eq.~2.1! when applied to this
multifractal set having only;103 lines.

We have considered two realizations: one with 1012 lines
@Fig. 1~a!# and a second one with 10 000 lines. As we have
already said, the first one has been extracted randomly from
the second one. Figure 1~b! show the log-log plots of differ-
ent q-moments vs the scaler for the set with 1012 lines.
Figure 1~c! is the same but for the set with 10 000 lines. In
both cases the fitted slope provides the estimation oft(q).
The scaling range where the power law of Eq.~2.1! holds is
228 to 221 for the set withN51012 lines and it is broader
for the set withN510 000 lines as we can easily see in the
figures. In the first case, the number of occupied cells does
not increase when the scaler gets values below a given one.
This discreteness effect breaks the scaling at small scales.

The correspondingD(q) and f (a) curves are plotted in
Figs. 1~d! and 1~e! with dotted lines forN51012 and dashed
lines forN510 000, respectively. The solid lines show the
expected theoretical functions displayed in Eqs.~2.3!–~2.5!.
The agreement is rather good even for the set with fewer
lines.

III. MULTIFRACTALS IN THE ANALYSIS OF REAL
SPECTRA

The previous simulated spectra were by construction mul-
tifractal sets. We are going to study now the part of the

FIG. 1. ~a! A realization of the
multiplicative multinomial cas-
cade. 1012 lines are shown in the
model. ~b! The partition sum
Z(q,r ) for different values ofq,
calculated for the set of lines
shown in ~a!. ~c! The same func-
tion as in~b! but for the set with
N510 000 lines.~d! The function
D(q) for the sets withN51012
~dotted line! and N510 000
~dashed line!. A solid line stands
for the theoretical prediction.~e!
The f (a) function @different line
styles represent the same as~d!#.
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spectra with wavelength in the range 2000210 000 ang-
stroms for three nonionized atoms: hydrogen, argon, and co-
balt. In the first case we use the Balmer and Paschen series
represented in Fig. 2~a!, while for the other two cases we use
the data in the table of wavelengths published by MIT@9#
@see Figs. 3~a! and 4~a!#. As a first approximation intensities
and widths of the lines are not considered. We are just inter-
ested in their distribution along the wavelength segment. The
number of lines used in each case isN5996 for hydrogen,
N5611 for argon, andN51455 for cobalt. In Figs. 2~b!,
3~b!, and 4~b! we show the log-log plots of the partition
function Z(q,r ) versusr corresponding to the spectral line
series of the three atoms. In each case five different values of
q have been selected. The scaling range where a power law
holds is 226 to 221 for the spectra corresponding to argon
and cobalt and 2210 to 221 for the series of the hydrogen
atom. After fitting a power law within these ranges we have
obtained the exponentst(q) following Eq. ~2.1!. The corre-
spondingD(q)5t(q)/(q21) functions are plotted in Figs.
2~c!, 3~c!, and 4~c!. By doing a numerical Legendre transfor-
mation we have obtained thef (a) curves shown in Figs.
2~d!, 3~d!, and 4~d!. This analysis allows us to conclude that
the multifractal spectrum might be used to characterize the
inherent scaling properties of the wavelength distribution of
the spectral line series. We can see that for the hydrogen
spectrum the capacity dimension isD(0).0.61 much less
than 1, while argon and cobalt present values of
D(0).0.96 andD(0).1.00, respectively. In 1D, when

D(0)51 the distribution is known as a fat fractal. The value
of D(0).1 is due to the fact that the spectral line series of
argon and cobalt are more space filling than the Balmer se-
ries, but still they display multifractal properties. The capac-
ity dimension of the part of the hydrogen spectrum analyzed
numerically in this paper is rather similar to the fractal di-
mension of the ternary Cantor setD(0)5 log2/log3.0.63.
For a similar discrete example, it is worth mentioning that
the set of points defined by$1/n%n51

` has capacity dimension
D(0)51/2.

The value ofamin @or equivalentlyD(1`)# is .0.14 for
the hydrogen atom and.0.6 for argon and cobalt. Since this
exponent is the one corresponding to the regions with highest
density of the spectral line series, the previous difference has
to be interpreted in terms of the scalingpi(r )5r a i. The num-
ber of lines in the vicinity of the denser regions grows more
rapidly for the selected lines of the Balmer and Paschen se-
ries than for all the experimental spectral lines of argon and
cobalt.

For q>0 the D(q) functions for argon and cobalt are
rather similar, showing that the high density regions of the
spectral lines of both elements are rather similarly distrib-
uted. This similarity can be appreciated also in the left
branch of correspondingf (a) curves. The differences be-
tween the line series of these atoms appear forq,0 corre-
sponding to the low density zones of the spectral line series
@see also the right branch of thef (a) curve#. The value of

FIG. 2. ~a! The Balmer and
Paschen series of the hydrogen
atom.~b! The functionZ(q,r ) for
different values ofq calculated for
the set of lines shown in~a!. ~c!
The D(q) function for this spec-
tral line series. ~d! The corre-
spondingf (a) spectrum.
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amax @or equivalently D(2`)# is larger for cobalt,
amax.1.75, than for argon,amax.1.52, and both are larger
than the value corresponding to the spectral series of the
hydrogen atom,amax.1.22. This fact shows how the scaling
index corresponding to the low density regions changes from
one set of lines to another. The differenceamax2amin is
larger for cobalt than for argon. This is an interesting feature
which reveals that the distribution of the lines in the wave-
length interval is more inhomogeneous for the spectrum of
cobalt than for the spectrum of argon. It is also interesting to
note that for the Balmer series of the hydrogen atom
f (amax).1Þ0 and therefore the rightmost part of thef (a)
curve resembles a hook. In the other two casesf (amax).0.
This fact implies that the dimensionality of the most rarefied
part of the spectra for argon and cobalt is zero, correspond-
ing to a single point, while it is.1 for hydrogen, corre-
sponding to a set of points with finite nontrivial dimension.

IV. MULTISCALING

It should be possible that some spectral lines were not
seen because of experimental poor resolution or because they
are extremely weak compared with other lines~e.g., the well
known forbidden lines in astronomical spectroscopy detected
in the spectra of certain HII regions!. We can model this
possible lack of information by means of the multiplicative
multifractal cascade in which all last generation cells with an
attached probability below a certain thresholde are just as-

signed with zero probability. In other words, if the density of
lines within such a cell is less thane, we consider that this
cell is indistinguishable from a real zero density cell. We are
now interested in how the functionsD(q) and f (a) look for
the censored set. We will see that the characteristic expo-
nents are slowly varying functions of the threshold density.
This phenomenon is known as multiscaling@10–12#. Al-
though it is known that multifractality implies multiscaling,
multiscaling could be a more general phenomenon@13#.

In Fig. 5, we see the model shown in Fig. 1~a! after ap-
plying two different density thresholdse15831024 and
e251.631023. In the first case 719 lines have survived after
thresholding, while only 413 have remained in the second
case. In Fig. 6~a! we show the partition sumZ(2,r ) as a
function ofr in a log-log plot. The function corresponding to
the whole set without any threshold is displayed with a dot-
ted line. The solid line corresponds to the expected analytical
solution. It is remarkable how good the agreement is be-
tween these two lines. The long-dashed line corresponds to
the set after applying the first thresholde1, while the short-
dashed line comes from the second density thresholde2. Al-
though the expected multiscaling deviations appear clearly
noticed in the plot, the differences between the slopes are
smaller than in Fig. 6~b!, where we show the function
Z(25,r ) for the same sets. As we can see, differences are
much pronounced for the momentq525 than for q52.
This is due to the fact that negative moments emphasize the
low density regions of the multifractal set. For negativeq,

FIG. 3. The same as Fig. 2 but for argon.
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scaling ranges vary with the density threshold. Moreover, the
slope of these curves within the scaling range,t(q), changes
with the density cutoff as is usual in the multiscaling ap-
proach. The functionZ(q,r ) of the censored sets tends as-
ymptotically to the function corresponding to the uncensored
set for large values ofr . This tendency is more evident for
q52 than forq525. The denser regions are less affected
by thresholding, and obviously the moments corresponding
to positive values ofq are less changed. These trends are
appreciated globally in Figs. 6~c! and 6~d!. In these plots we

show the functionsD(q) and f (a) corresponding to the
whole set~dotted line! and to the set after applying the den-
sity thresholde1 ~dashed line!. The solid lines correspond to
the theoretical predictions of Eqs.~2.3!–~2.5! when no den-
sity cutoff is applied and to their corresponding counterparts
when a density threshold is used to censor the set. The func-
tion t(q) is obtained as the slope of the log-log plot of
Z(q,r ) vs r . The fit is performed within the scaling range
where the power law holds. This range obviously depends on
the density threshold as can be easily appreciated in Figs.

FIG. 4. The same as Fig. 2 but for cobalt.

FIG. 5. Censored realizations
of the multiplicative multifractal
cascade after applying a density
threshold: ~a! e15831024 and
~b! e251.631023.
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6~a! and 6~b!. It is interesting to notice that the value of the
capacity dimensionD(0) is not appreciably affected by the
density threshold. The multiscaling deviations appear more
clearly noticeable forD(q) when q,0; consequently the
right-hand branch of thef (a) spectrum is more strongly af-
fected by the density cutoff. This is due to the fact that the
size of the empty regions increases when we remove lines

belonging to subintervals with probability less than the given
threshold.

We have also performed the multiscaling analysis of the
experimental line series of cobalt. As we can see in Fig. 7,
the behavior previously found for the multiplicative model is
well reproduced by the real data. We have applied two den-
sity thresholds in order to remove 13% and 20% of the lines,

FIG. 6. ~a! The partition sum
Z(2,r ) for the multiplicative cas-
cade: the solid line corresponds to
the theoretical prediction, the dot-
ted line to the realization with
N51012 lines without any cutoff,
the long-dashed line corresponds
to the first density thresholde1,
and the short-dashed line toe2.
~b! The same as~a! but for
q525. ~c! The functionD(q) for
the whole set withN51012 lines
~dotted line!. The theoretical re-
sult of Eq. ~2.8! is the solid line
lying close to the dotted one. The
dashed line corresponds to the
density thresholde1, and again the
solid line close to this one is the
theoretical prediction for this case.
~d! The same as~c! but for the
f (a) curve.

FIG. 7. The same as Fig. 6 but
for the experimental line series of
cobalt. In all panels, the solid line
corresponds to the whole data set,
while the dotted and dashed lines
correspond to removing 13% and
20%, respectively, of the spectral
lines in the low density regions.
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respectively. The removed lines obviously lie in the low den-
sity regions of the wavelength distribution. In Fig. 7~a!, we
can appreciate that the slope of the log-log plot ofZ(2,r ) vs
r is nearly not affected by the density cutoff, while for
Z(25,r ) the threshold affects both the scaling range and the
slope @see Fig. 7~b!#. The correspondingD(q) and f (a)
functions are shown in Figs. 7~c! and 7~d!. The same trends
already seen with the multiplicative model are observed in
the analysis of the real data.

V. CONCLUSION

We have introduced the multifractal techniques to analyze
the spectral line series associated to energized atoms. The
distribution of the lines along a segment of wavelengths
seems to show clear scaling properties in a given range of
wavelengths. We have tested the method in a simple model
to generate artificial multifractal spectra in 1D by means of a
multiplicative cascade. The model has the virtue of possess-
ing an analytical expression for the multifractal curves
D(q) and f (a). We have shown that a number of lines of the
order of 1000 is enough to obtain rather good estimates of
these multifractal functions by means of the box-counting
algorithm.

We have analyzed the spectral line series of several atoms
~hydrogen, cobalt, and argon!. The main characteristics of
the wavelength distribution of lines are clearly interpretable
looking to their correspondingD(q) or f (a) curves. The
simpler structure of the hydrogen spectrum is clearly noticed
in the nearly bifractal behavior of itsD(q) function. A bi-
fractal is qualitatively similar to the power-law singularity
measure of Ref.@4#.

By means of the multifractal quantities, we can compare
quantitatively the spectral line series of different atoms.
Therefore, this approach provides us with a kind of charac-
terization of the spectral line series.

The reliability of the multifractal description is tested
against possible experimental missed lines. The test is per-
formed by means of the multiscaling approach. In this ap-
proach, regions of the multifractal set with local density be-
low a given thresholde are erased. The corresponding
multifractal exponentst(q) are slightly varying functions of
the density threshold. For the multiplicative model used here,
the deviations from the original multifractal functions are
much more significant for negative values ofq. Since denser
regions are obviously less affected, the functionD(q) for
q.0 @or equivalently the left-hand branch off (a)# remains
more stable after censoring the set with the density cutoff.

It seems reasonable that some kind of order exists in the
distribution of the energy states of an atom and as a conse-
quence in its emission spectrum. In Ref.@14#, Kohmotoet al.
have analyzed the scaling of the self-similar wave functions
of the energy spectrum of one-dimensional quasicrystal mod-
els. Our work seems to imply that, within a certain range, the
wave function of an atom should be self-similar as a conse-
quence of the observed multifractal self-similarity of its line
spectrum.
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