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Multifractal analysis of the atomic spectral line series
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We have used the multifractal approach for the characterization of the spectral line series of energized
atoms. We show how the wavelength distribution of lines follows the characteristic scaling of the multifractal
sets. This technique provides us with a way of describing the properties of the clustering of lines in the spectra.
We have used a multiplicative multifractal model to test the reliability of the method when applied to the usual
number of lines of experimentally obtained spectra. By means of the multiscaling approach we can control the
robustness of the method when applied to sets of lines censored below a given density threshold.
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[. INTRODUCTION we count the number of lines lying within each ome(r).
Multifractal scaling holds if
The spectral line series associated to an energized atom is

the sequence of wavelengths characterizing its electromag- N(r) q

. o ; o . ni(r)
netic radiation. Each element has its own characteristic series Z(q,r)=2, | ——=| or™@, (2.2
of spectral lines. Hydrogen displays the well known five se- i=1

ries in different parts of the spectrum: the Balmer series in
the visible region, the Lyman lines in the ultraviolet, and theN being the total number of lines. The quantities defined as
Paschen, Brackett, and Pfund series lying in the infrared. The (q) = 7(q)/(q— 1) are known as Re/i dimensions or gen-
wavelength distribution of the lines expressed in terms of theralized dimension$2,3]. This function characterizes the
inverse wavelength is remarkably well represented by Balmscaling properties of the multifractal set.
er's formula An alternative description is provided by tliéa) func-
tion [4,5]. If the cell-counts can be expressed as a power law
of the scalep;(r) = (n;(r)/N)=r“. Multifractal scaling im-
), n=>m, (1.))  plies that the distribution of ther values(also known as

1 1 1
Py
Holder exponentsis

N Rl n

with m=2 for the Balmer series, amd=1,3,4,5 for Lyman,
Paschen, Brackett, and Pfund series, respectivelyenotes
the Rydberg constant.

Similar formulas exist for the atoms of the alkali metals wheren(a)de is the number of times: takes a value in a
and other hydrogenlike elements like singly-ionized helium given intervall a,«+da] [3]. The distribution of the Hidler
Experimental spectral line series corresponding to other aexponentsy is related with7(q) through a Legendre trans-
oms are also available. The spectrum of atoms like iron oformation[4,6].
cobalt are visually more complicated than the spectrum of
the hydrogen atom and obviously they do not appear to show
the same regularity in spacing. Nevertheless, the distribution
of the spectral lines of these atoms might be an interwoven To illustrate the multifractal behavior in a controllable set
superposition of formulas similar to Balmer’s. of lines similar to the spectral line series, we will consider a

In this paper we will see that the wavelength distributionmultiplicative multinomial cascade in the unit interval, used
of the emission lines of the spectrum of energized atomé&xtensively to mimic turbulent processgs7,8. Dividing
follows some kind of multifractal scaling. the unit interval intos pieces, we assign a probability

P1,P2 - - \Ps to each of the subintervals
(p1+p2t---+ps=1). Each subinterval is then subdivided
Il. THE MULTIFRACTAL SCALING into s pieces in the same way as the parent, and we assign to

In order to study, by means of the multifractal analysis®ach of the subdivisions one of the numbprs The value

[1], the spectral line series within a segment of wavelengthsttached to a new subdivision is the product of hizalue
we will normalize the length of the segment to unity. Per-With its parent and all its ancestors. We continue the cascade

forming a partition of the unit segment into cells of size  until L levels have been constructed, leaving at the €nd
subintervals with a measure{p;1piz- - PiL -1 (Pij

n(a)da~|Inr|Y%r 1 (@dq, (2.2

A. An illustrative multifractal model

e{p1.pP2, .. ..ps}) attached to each one. if (n<s) is the
“Electronic address: andressa@evalvx.ific.uv.es number of nonzerp; values, it is straightforward to see that
"Electronic address: martinez@hubble.matapl.uv.es in the limit whenL — o,
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(=M .pY multifractal curveD(q) using Eq.(2.1) when applied to this

In
D(q)=(1-q)~* (2.3 multifractal set having only- 10° lines.

Ins We have considered two realizations: one with 1012 lines
S [Fig. 1(a)] and a second one with 10 000 lines. As we have
and thef(a) spectrum is given by already said, the first one has been extracted randomly from
s pdinp; the second one. FiguréH) show the log-log plots of differ-
a(q)= Ln'q (2.4)  entg-moments vs the scale for the set with 1012 lines.
In(1/s) =i 1 p Figure Xc) is the same but for the set with 10 000 lines. In
both cases the fitted slope provides the estimation(q).
and The scaling range where the power law of E2.1) holds is
_— S0 o0 (s 278 t0 271 for the set withN=1012 lines and it is broader
Ha(q)= aZi=1pi'Inp;— (Zi=1p;) (I |*1p|) (2.5  for the set withN=10 000 lines as we can easily see in the
In(1/s)=,pf figures. In the first case, the number of occupied cells does

not increase when the scalagets values below a given one.
In Fig. 1(@ we show a realization of a multiplicative multi- This discreteness effect breaks the scaling at small scales.

nomial cascade witls=6 and number of levels =4. First The correspondind (q) and f(«) curves are plotted in
we have distributed 10 000 lines into thk subintervals ac-  Figs. 1d) and Xe) with dotted lines foN=1012 and dashed
cordingly to the probabilities assigned to each ofshesub-  lines for N=10 000, respectively. The solid lines show the

intervals. Only 1012 randomly selected lines have been plotexpected theoretical functions displayed in E@3)—(2.5).
ted in the figure. The values of the initial probabilities usedThe agreement is rather good even for the set with fewer
in this example arep;=0.1, p,=0.1, p3=0.1, p,=0.2, lines.

pPs=0.2, pg=
Equat.'ons(z'S)._(z'a are the analytical expressions for ,, vy TIFRACTALS IN THE ANALYSIS OF REAL
the Renyi dimensions and th& «) curve, respectively. Nev- SPECTRA

ertheless, we want to test how the scaling relatid), used
for practical purposes, works for a limited number of lines. The previous simulated spectra were by construction mul-
As we will show, we are able to get reliable results for thetifractal sets. We are going to study now the part of the
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spectra with wavelength in the range 26000 000 ang- D(0)=1 the distribution is known as a fat fractal. The value
stroms for three nonionized atoms: hydrogen, argon, and caf D(0)=1 is due to the fact that the spectral line series of
balt. In the first case we use the Balmer and Paschen serigggon and cobalt are more space filling than the Balmer se-
represented in Fig.(2), while for the other two cases we use ries, but still they display multifractal properties. The capac-
the data in the table of wavelengths published by N®T ity dimension of the part of the hydrogen spectrum analyzed
[see Figs. @) and 4a)]. As a first approximation intensities nymerically in this paper is rather similar to the fractal di-
and widths of the lines are not considered. We are just intefqension of the ternary Cantor sBt(0)=log2/log3=0.63.

ested in their distribution along the wavelength segment. Thg o 4 similar discrete example, it is worth mentioning that

number of lines used in each caseNs-996 for hydrogen, . . o - .
N=611 for argon, andN= 1455 for cobalt. In Figs. ®), E(eos)e:t f;2p0|nts defined Kt /nj, has capacity dimension

3(b), and 4b) we show the log-log plots of the partition . .

function Z(q,r) versusr corresponding to the spectral line The value ofar, [or equivalentlyD(+)] is 20'.14 for .
series of the three atoms. In each case five different values (t)tpe hydroge” atom ane 0.6 for argon and COt?a't- Smce Fh|s

q have been selected. The scaling range where a power lafiPonent is the one corresponding to the regions with highest
holds is 2°® to 2~ for the spectra corresponding to argon densn_y of the spe_ctral line series, th_e previous difference has
and cobalt and 21° to 271 for the series of the hydrogen {© be interpreted in terms of the scalipgr) =r. The num-
atom. After fitting a power law within these ranges we haveber_ of lines in the vicinity of the denser regions grows more
obtained the exponentgq) following Eq. (2.1). The corre- rapidly for the selected lines of the Balmer and Paschen se-
spondingD(q) = 7(q)/(q— 1) functions are plotted in Figs. ries than for all the experimental spectral lines of argon and
2(c), 3(c), and 4c). By doing a numerical Legendre transfor- cobalt.

mation we have obtained tha) curves shown in Figs. For g=0 the D(q) functions for argon and cobalt are
2(d), 3(d), and 4d). This analysis allows us to conclude that rather similar, showing that the high density regions of the
the multifractal spectrum might be used to characterize thepectral lines of both elements are rather similarly distrib-
inherent scaling properties of the wavelength distribution ofuted. This similarity can be appreciated also in the left
the spectral line series. We can see that for the hydrogebranch of corresponding(«) curves. The differences be-
spectrum the capacity dimension §0)=0.61 much less tween the line series of these atoms appearmtal0 corre-
than 1, while argon and cobalt present values ofsponding to the low density zones of the spectral line series
D(0)=0.96 and D(0)=1.00, respectively. In 1D, when [see also the right branch of tH¢«) curvel. The value of
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amax [OF equivalently D(—o)] is larger for cobalt, signed with zero probability. In other words, if the density of
amac=1.75, than for argong,=1.52, and both are larger lines within such a cell is less thag we consider that this
than the value corresponding to the spectral series of theell is indistinguishable from a real zero density cell. We are
hydrogen atomgma,=1.22. This fact shows how the scaling now interested in how the functiom(q) andf(«) look for
index corresponding to the low density regions changes frorthe censored set. We will see that the characteristic expo-
one set of lines to another. The differenag —am, is  NeNts are slowly varying functions of the threshold density.
larger for cobalt than for argon. This is an interesting featurelhis phenomenon is known as multiscalifg0-12. Al-
which reveals that the distribution of the lines in the wave-though it is known that multifractality implies multiscaling,
length interval is more inhomogeneous for the spectrum ofultiscaling could be a more general phenomefis].

cobalt than for the spectrum of argon. It is also interesting to In Fig. 5, we see the model shown in Figallafter ap-
note that for the Balmer series of the hydrogen atonPlying two different density thresholds;=8x10"* and
f(ama)=17#0 and therefore the rightmost part of thew) €,=1.6x10"3. In the first case 719 lines have survived after
curve resembles a hook. In the other two calfgs,,,)=0.  thresholding, while only 413 have remained in the second
This fact implies that the dimensionality of the most rarefiedcase. In Fig. &) we show the partition sunz(2r) as a
part of the spectra for argon and cobalt is zero, correspondunction ofr in a log-log plot. The function corresponding to
ing to a single point, while it is=1 for hydrogen, corre- the whole set without any threshold is displayed with a dot-
sponding to a set of points with finite nontrivial dimension. ted line. The solid line corresponds to the expected analytical
solution. It is remarkable how good the agreement is be-
tween these two lines. The long-dashed line corresponds to
the set after applying the first threshadg, while the short-

It should be possible that some spectral lines were notlashed line comes from the second density threskgoldl-
seen because of experimental poor resolution or because ththough the expected multiscaling deviations appear clearly
are extremely weak compared with other liiesy., the well  noticed in the plot, the differences between the slopes are
known forbidden lines in astronomical spectroscopy detectedmaller than in Fig. @), where we show the function
in the spectra of certain H regiong. We can model this Z(—5,r) for the same sets. As we can see, differences are
possible lack of information by means of the multiplicative much pronounced for the momeqt —5 than forq=2.
multifractal cascade in which all last generation cells with anThis is due to the fact that negative moments emphasize the
attached probability below a certain thresheldre just as- low density regions of the multifractal set. For negatiye

IV. MULTISCALING
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scaling ranges vary with the density threshold. Moreover, theahow the functionsD(q) and f(«) corresponding to the
slope of these curves within the scaling rangf@), changes whole set(dotted ling and to the set after applying the den-
with the density cutoff as is usual in the multiscaling ap-sity thresholde; (dashed ling The solid lines correspond to
proach. The functiorZ(q,r) of the censored sets tends as-the theoretical predictions of Eq&.3)—(2.5 when no den-
ymptotically to the function corresponding to the uncensoredity cutoff is applied and to their corresponding counterparts
set for large values of. This tendency is more evident for when a density threshold is used to censor the set. The func-
g=2 than forg=—5. The denser regions are less affectedtion 7(q) is obtained as the slope of the log-log plot of
by thresholding, and obviously the moments corresponding(q,r) vs r. The fit is performed within the scaling range
to positive values ofj are less changed. These trends arewhere the power law holds. This range obviously depends on
appreciated globally in Figs.(€ and &d). In these plots we the density threshold as can be easily appreciated in Figs.

. FIG. 5. Censored realizations
of the multiplicative multifractal
cascade after applying a density

, threshold: (a) €;=8%10"* and

b (b) €,=1.6x1073.
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6(a) and @&b). It is interesting to notice that the value of the belonging to subintervals with probability less than the given
capacity dimensioD(0) is not appreciably affected by the threshold.

density threshold. The multiscaling deviations appear more We have also performed the multiscaling analysis of the
clearly noticeable forD(q) when q<0; consequently the experimental line series of cobalt. As we can see in Fig. 7,
right-hand branch of thé(«) spectrum is more strongly af- the behavior previously found for the multiplicative model is
fected by the density cutoff. This is due to the fact that thewell reproduced by the real data. We have applied two den-
size of the empty regions increases when we remove linesity thresholds in order to remove 13% and 20% of the lines,
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respectively. The removed lines obviously lie in the low den- By means of the multifractal quantities, we can compare
sity regions of the wavelength distribution. In Figay we  quantitatively the spectral line series of different atoms.
can appreciate that the slope of the log-log ploZ¢2,r) vs  Therefore, this approach provides us with a kind of charac-
r is nearly not affected by the density cutoff, while for terization of the spectral line series.

Z(—5,) the threshold affects both the scaling range and the The reliability of the multifractal description is tested
slope [see Fig. )]. The correspondind(q) and f(«) against possible experimental missed lines. The test is per-
functions are shown in Figs(@ and 7d). The same trends formed by means of the multiscaling approach. In this ap-
already seen with the multiplicative model are observed irproach, regions of the multifractal set with local density be-

the analysis of the real data. low a given thresholde are erased. The corresponding
multifractal exponents(q) are slightly varying functions of
V. CONCLUSION the density threshold. For the multiplicative model used here,

) ) _ the deviations from the original multifractal functions are

We have introduced the multifractal techniques to analyzgnych more significant for negative valuescpfSince denser
the spectral line series associated to energized atoms. Tfﬂ@gions are obviously less affected, the functdfq) for
distribution of the lines a_Iong a segment of yvavelength >0 [or equivalently the left-hand branch 6fe)] remains
seems to show clear scaling properties in a given range Qhore stable after censoring the set with the density cutoff.
wavelengths. We have tested the method in a simple model |t seems reasonable that some kind of order exists in the
to generate artificial multifractal spectra in 1D by means of &jistribution of the energy states of an atom and as a conse-
multiplicative cascade. The model has the virtue of POSSeSguence in its emission spectrum. In Rgf4], Kohmotoet al.
ing an analytical expression for the multifractal curveshaye analyzed the scaling of the self-similar wave functions
D(q) andf(a). We have shown that a number of lines of the of the energy spectrum of one-dimensional quasicrystal mod-
order of 1000 is enough to obtain rather good estimates af|s. Our work seems to imply that, within a certain range, the
these multifractal functions by means of the box-countingyave function of an atom should be self-similar as a conse-

algorithm. . _ quence of the observed multifractal self-similarity of its line
We have analyzed the spectral line series of several atomg,ectrum.

(hydrogen, cobalt, and argpnThe main characteristics of
the wavelength distribution of lines are clearly interpretable
looking to their correspondindp(q) or f(«) curves. The
simpler structure of the hydrogen spectrum is clearly noticed This research is partially supported by the project No.
in the nearly bifractal behavior of it®(q) function. A bi-  GV-2207/94 of the Conselleria d’EducacicCiencia de la
fractal is qualitatively similar to the power-law singularity Generalitat Valenciana. We are grateful to E. Saar and B.
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